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1.0 INTRODUCTION

The objective of this study is the development and testing by simulation of

nonlinear and adaptive estimators for reentry (e. g. space shuttle) navigation and

model parameter estimation or identification. Of particular interest is the identifi-

cation of vehicle lift and drag characteristics in real time, since these are important

for guidance and control.

Published work in reentry estimation (Ref. [3]) indicates the importance of

nonlinear effects in reentry trajectory estimation. In post flight trajectory recon-

struction, batch least squares methods tend to diverge, and the standard Extended

Kalman filter appears unsuitable for real time applications. This motivates the

application of nonlinear filtering techniques (Ref. [1]) to the reentry problem.

Some related work on ballistic reentry trajectory estimation may be found in

Ref. [4].

To meet the objectives of the study, several nonlinear filters were developed

and simulated. In addition, adaptive filters for the real time identification of vehicle

lift and drag characteristics, and unmodelable acceleration, were also developed

and tested by simulation. The simulations feature an uncertain system environment

with rather arbitrary model errors, thus providing a definitive test of estimator

performance.

It was found that nonlinear effects are indeed significant in reentry trajectory

estimation and a nonlinear filter is demonstrated which successfully tracks through

nonlinearities without degrading the information content of the data. Under the same

conditions, the usual Extended Kalman filter diverges and is useless. Interesting

relationships are also found between nonlinearities and tracking geometry.

The J-Adaptive filter, developed in the course of this study, is shown to

successfully track errors in the modeled vehicle lift and drag characteristics.

The same filter concept is also shown to track successfully through rather arbitrary
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model errors, including lift and drag errors, vehicle mass errors, atmospheric

density errors and wind gusts.

The report is organized as follows: Section 3.0 and 4.0 describe the

trajectory and measurement models. The "real" system and system model are

described in Section 5. 0. Nonlinear and adaptive estimators are developed in general

form in Section 6.0 and specialized to the problem at hand in Section 7.0. Section

8.0 presents the various partial derivatives required in the estimator equations.

Of particular note is our closed-form (analytic) approximation to the state transition

matrix, which is apparently quite successful and efficient. Simulations of the

various filters are presented in Section 9.0 and our conclusions and recommendations

follow in Section 10. 0.
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2.0 LIST OF SYMBOLS*

A

A

al, a2

(ax, a , a )xy z

CA

CLa

CL

CD

C
U

C

c
C2

Azimuth

Unit vector defined in Eqn. (3-10)

Parameters defined in Eqn. (A-13)

Components of sensed acceleration vector along e
x

, ey, e
z

axes

Error coefficient in drag model (p. 5-2)

Error coefficient in lift model (p. 5-2)

Lift coefficient

Drag coefficient

Correlation matrix (Eqn. (6-19)

Speed of sound

Constant in Eqn. (7-3)

D Drag vector

d Oblateness displacement vector given in Eqn. (3-8)

d Vector in earth equatorial plane, orthogonal to the projection
of R onto that plane; defined in Eqn. (3-17)

E Elevation

e Eccentricity of earth ellipse

(ex , ey, e ) Unit vectors defining the inertial (geocentric) rectangular
coordinate system; e through the north pole, e and e

in equatorial plane, e to the Vernal Equinox of epoch.

(ext, ey t , ezt ) Unit vectors of topocentric coordinate system; ex south,

e east, e positive upward along the local vertical

*Symbols for intermediate quantities in the partial derivatives of Section 8.0 are
defined there and are not included in this list of symbols.
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f System function

g Gravitational acceleration vector

GHA Greenwich hour angle

h Altitude above oblate earth; measurement function

HI (Pseudo) unit angular momentum vector define in Eqn. (3-9)

I Identity matrix

z2 Earth oblateness coefficient

K Estimater gain matrix

kl Error parameter in density model (p. 5-2)

L Lift vector

M Mach number; Matrix of measurement partials

m Vehicle (constant) mass

N Matrix of partials defined in Eqn. (6-23)

P State estimation error covariance matrix

Q Process noise covariance matrix

R Vehicle inertial position vector with components (x, y, z);
measurement noise covariance matrix

r Magnitude of R

R' Vector orthogonal to local geodetic horizon plane, Eqn. (3-7)

R Vector from station to vehicle in inertial coordinates

rp Range (magnitude of R)

R1 Station position vector in inertial coordinates
S
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r
o

rE

r
P

S

t

U

V

v

VA

(v p A ' E
)

(a ' a , Va
x y

vR

W

w

wEWE

WN

x

(x, y, z)

(Xs, Ys' Zs)

Radius of oblate earth

Earth equatorial radius

Earth polar radius

Vehicle reference area

Time

Covariance matrix of u

Model error vector

Inertial velocity vector, equals R

Measurement noise vector

Velocity vector of atmosphere given in Eqn. (3-6)

Velocity vector of vehicle relative to the atmosphere

Noise in radar measurement

) Noise in acceleration measurement
z

Magnitude of VR

Wind velocity vector

Process noise vector

Magnitude of wind velocity to the east

Magnitude of wind velocity to the north

State vector

Components of R along the axes (e
x

, ey, e )

Components of R
S
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(Xt't' yt) Topocentric coordinates of vehicle

Y Residual Covariance matrix

y Measurement vector

gy Acceleration measurement vector

Yr Radar measurement vector

Yam Modeled acceleration measurement

y Modeled radar measurement
rm

a Angle of attack

Roll angle (around relative velocity vector)

hA Residual function (Eqn. (6-13))

Vectors defining Q (Eqns. (7-3), (7-4))

1711 772 Error coefficients in drag model (p. 5-2)

77
k

kth iterate (Eqs. (6-8), (6-11))

0 Longitude

et Right ascension (see Figure 2)

it Universal gravitational constant times the mass of the earth

Variable in Appendix A

,k kth iterate (Eqn. (6-11))

p Atmospheric density

P ax' aay a z) Standard deviations of acceleration measurement noise

(Op aA. aE) Standard deviations of radar measurement noise
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T Time interval (Eqn, (8-1))

State transition matrix

Geocentric latitude

cP Geodetic latitude
g

Matrix of partials defined in Eqn. (6--23)

Earth rotation vector

w0 Magnitude of fk

Other symbols, subscripts and superscripts:

('}) First time derivative

() ' ) Second time derivative

I . | Magnitude of a vector

(-) Unit vector

(i) Time index

Z--C- 0Partial derivative with respect to 5

. {- } Expectation operator

C() Estimate of quantity in parentheses

(i Ij) At time i, given measurements up to time j

Conventions:

All vectors are column vectors; superscript T denotes a vector (matrix)
transpose. The vector cross product of the vectors a and b is written
a x b.
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3.0 TRAJECTORY MODEL

The vehicle translational motion is described in an inertial (geocentric) rec-

tangular coordinate system. The earth is assumed to be oblate and rotating. Forces

acting on the vehicle consist of gravity, lift and drag. If R is the vehicle (center of

gravity) position vector, then the motion is described by

R += L+ D (3-1)

It is assumed that vehicle turns are coordinated, so that a sideforce is only produced

by a rotation of the lift vector around the relative velocity vector.

It is necessary to describe the accelerations on the right-hand side of Equation

(3-1) in our inertial coordinate system. This will be done with the aid of Figure 1. Now

the gravitational acceleration g is given by

g=MR +2 f 2 .sJ2 zg= - R - 1 + 5 ( z )] R e (3-2)'3 5 L 5 zr r r

Oblateness

The magnitudes of lift and drag are modeled as

ILI = pv 2 S 
c

L, (3-3)

IDI = PvR S CD, (3-4)

where vR is the magnitude of the relative velocity vector (relative to the atmosphere),

VR =VV A * (3-5)
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V = i is the inertial velocity vector, and VA is the velocity of the atmosphere,

given by

V
A

= x R + W. (3-6)

Models for atmospheric density p, lift and drag coefficients CL and CD, and

winds W will be described subsequently. First, we determine the inertial directions

of L and D.

The vector R', shown in Figure 1, is orthogonal to the local geodetic horizon

plane, and is given by

R' = -d (3-7)

where

d -e 2 xe +e 2 ye . (3-8)
x y

(See Appendix A - Figure of the Earth. ) Then the unit (pseudo) angular momentum vector

R'xVR

H = (3-9)
IR'xVR I

is orthogonal to the local horizon and to the relative velocity vector. The roll angle B

(roll around relative velocity vector) is measured in the plane defined by H and VRxH.

If we define

A = cos 8I + sin VR x H, (3-10)

then the lift direction is given by

L=VRxA . (3-11)
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The direction of drag is clearly - VR .

Now the lift and drag accelerations in Eqn. (3-1) can be written as

L+D 1 r
m 2 m PSVR -CD VR + CL VR 

x A

I (3-12)

Our equations of motion, in first order form, are then given by

= _ R + -J2 [ -1+5 ) ]R e
r3 5r r r r r

(3-13)

+2m PSvR -CD VR+ CLVR A

We now turn to a description of the atmosphere and vehicle aerodynamics.

Atmospheric density is taken as a tabulated function of altitude (see Appendix B),

where altitude is given by

h=r-r
o
, r =

0 o

r
E

+r e2 ]( -( r 
-e 2 r)J J1-e

The wind velocity vector (in Eqn. (3-6)) is taken of the form

e xR d xR'

W = WE l eN Rdr x RI
] ezX Idr ]

3 -4
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where

d =ye - x e. (3-16)
r x y

WE is the wind component blowing to the east, and wN is the wind component blowing

to the north.

The lift and drag coefficients of the vehicle CL (c, M), CD (et, M) are taken

as tabulated functions of angle of attack a and Mach number M (see Appendix B),

where the Mach number is given by

VRM = - (3-17)

The speed of sound c is taken as a tabulated function of altitude (see Appendix B).
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4.0 MEASUREMENT EQUATIONS

Measurements consist of radar tracking and on-board linear accelerations.

These are described in the next two subsections.

4.1 Radar Tracking

Radar tracking consists of range, azimuth and elevation measurements.

Referring to Figure 2, we see that range r is given by

rp= JR I (4-1)
p P

where
R =R-R (4-2)

P s

and R is the station position vector.
s

Azimuth and elevation are most easily expressed in the topocentric coordinate

system (Figure 2). It is seen that

t

and
-1 zt

E = tan I (4-4)
2 2
-zt

Also,

2 2
Yt -xt zt (rO-zt )sin A= , cosA= A, sin E cos E (4-5)

2 2 2 rP p~(r _'Zt(r -z
P t P

To express azimuth and elevation in terms of inertial coordinates, we develop

the transformation from topocentric coordinates to our inertial frame. The transformation
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FIGURE 2

Topocentrtec Coordinate System
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cos 8t

-sin at

0

sin et

CoS at

o

0

0

1

rotates (ex , ey, ez) through the angle 6t around the e axis, so that ex passes

through the station meridian. Then the transformation

0 -cos (pg

1 0

0 sin lpg

brings the resulting frame in coincidence with the topocentric frame. Thus we have

sin gCOs tg t

-sin 0 t

cos 0g( cos 0
g t

sin (pg sin et

cos 6t

cos (g sin et

-cos (Pg

0

sin(pg

Rp. (4-6)P

Here, of course, 0t and (pg, are the right ascension and geodetic latitude of the

station.

It remains to express R s , the inertial position of the station, in terms of geodetic

latitude, longitude and altitude of the station, Aside from a rotation through the angle

St, this is given in Eqn. (A-15) of Appendix A. If the earth cross section of Figure

A is the station meridian plane, then

x = e cos Ot

Y = sin 5 t

4-3

sin SPg

0

cos 0g

Xt

yt

Zt



and in view of Eqn. (A-15),

X = (r a + h) cos c Cos t
s E g t

Ys = (rEal + h) cos 0Pg sin 0t (4-7)

z
s

=(r Ea + h) sin 0gs E 2 g

(Xs' Ys, zs) are the components of R . Of course,

0t = GHA + O (4-8)

where GHA is the Greenwich hour angle and e the station longitude.

4.2 Linear Accelerations

Accelerations along the inertial (ex , e e ) axes are presently considered.

These are given by

T T +DT
a= (-) ex, a = (L+D) e a L--)e (49)
x m x y m y z z(

where (L+D)/m is given in Eqn. (3-12).
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5.0 THE DYNAMICAL SYSTEM

Having developed the dynamical equations of motion (3-13) and the measurement

equations [(4-1), (4-3), (4-4), (4-9) ], we are now in a position to define the dynamical

system for estimation. In general, we make a distinction between what we shall call

the real system and the system model. Of course, the real system will be a simulated

one in the present study. The differences between the two systems are in general shown

in Table 1. They consist of different input constants and errors in atmospheric density,

winds and C and CD, added to the real system to produce the system model. The
L D

real system will be used to generate the measurements which will be processed by

estimators designed on the basis of the system model. We shall usually make no

notational distinctiop between the real and model systems.

Real system dynamics are given in Eqs. (3-13). The (real) measurements

are given by

Yr A(REAL) VA

y = RA) A ' +,(5-1)

E (REAL) E

where rp (REAL) ' A(EAL) ' E EAL) are given by Eqs. (4-1), (4-3) and

(4-4), respectively; and by

x(REAL) Va
x

3a?= ayEAL) + Va (5-2)
y

REAL(REAL) are given by Eq 49a

where axREAL) ayREAL) , ze(REAL) aregiven byEqs. (4-9). v, A, respective

Va V are independent, zero-mean, white Gaussian noises with respective
x y z

5-1



SYSTEM MODELREAL SYSTEM
lI__~~~~~~~~~~~~~~~~~~ I-~~~~~~~~~~~~~ ___-

J REAL

m REAL

p REAL

WE, wN REAL

C REAL

C, REAL
D

J2 MODEL

m MODEL

p MODEL = p REAL (1 + kl)

E ' WN MODEL = wE , wN REAL

+'AwE, Aw
E' N

CL MODEL = C L REAL + CLa

CD MODEL = CD REAL + CA

2
+ 717 + t72 a

kl' CLa' CA 711 2 - constants

TABLE 1

REAL AND MODEL SYSTEMS
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standard deviations cr a A, a E, a, a , a . Measurements are sampled

at discrete time instants ti, so that aftime t i an estimator will process

Yr(t), y (i). (5-3)

Estimators are designed on the basis of the system model. We always

estimate the position R and velocity V of the vehicle. To this end we define

the 6-dimensional state vector x,

[X1 X2 x3| X4 X5x6 : = [x1RT' VT I . (5-4)

Sometimes we estimate errors in the lift and drag coefficients AC L and ACD.

In that case we caln define the 2-vector

u= AC
D
L (5-5)

and modify the dynamical Equations (3-13) by replacing CL by

CL + u (5-6)

and C
D

by

C
D

+ u
2 .

(5-7)

We also make these replacements in the accelerations of Eqs. (4-9). When we

estimate unknown (or unmodeled) accelerations we define a 3-vector u to repre-

sent these unknown accelerations. In this case u is added to the right-hand side

of the second of Equations (3-13), and to the accelerations in Eqs. (4-9).

Let f( ) be the six-vector mapping defined by Equations (3-13), with the

system model parameters as given in Table 1. Then the system dynamical model

is given by

x(i+1) = f(x(i), u(t)) + w(i) 5-8)
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where u is either a 2-vector of CL and C
D

errors (Eq. (5-5)), or a 3-vector

of unknown accelerations. w is a 6 x 1 vector of independent, zero-mean, white

Gaussian noises. Both u and w will be made specific in connection with each

estimation algorithm.

Measurements are modeled as

Yr m( i ) =h (x(i)) + vli )rm

am) = h2 (x(i), u(i)) + v2 (i) ,

where

l
r (x(i))

A(x(i))

E(x(i))

vp(i)

VA(i)

vE(i)

, h2 (x(i), u(i)) =

,v (i) =

a (x(i), u(i))

ay(x(i), u(i))

a (x(i), u(i))

v (i)
ax

y

v (i)
az

To summarize, the real system generates measurements (5-1) and (5-2).

Estimators which will process these measurements are based on the model given

in Eqs. (5-8), (5-9) and (5-10).
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6. 0 NONLINEAR AND ADAPTIVE ESTIMATORS

Several nonlinear and adaptive estimators are presented in this section. These

estimators will be applied, in Section 7. 0, to the present reentry problem. Nonlinear

estimators include the Extended Kalman Filter and two local iterations which improve

the reference trajectory, and thus the estimate, in the presence of significant nonlinearities.

These nonlinear estimation algorithms are discussed in detail in Ref. [1], Chapter 8,

Section 3. Adaptive estimators aim, in one instance, at estimating errors in the lift

and drag coefficients. In the presence of other, unknown, model errors, the adaptive

estimator is designed to track the unknown accelerations.

The basic system model for the nonlinear estimators is given by

x(i+l) = f (x(i)) + w (i)

(6-1)

y(l) = h (x(i)) + v (i)

where x is the state vector and y the measurement vector. fw(l) }, v(i) are

independent, zero-mean white Gaussian noise sequences with

e w(i) wT() = Q ()

(6-2)

e Ev(t) v(i) } = R (i)

Estimators Involve recursions for the esttmate of the state (x) and the estimation

error covariance matrix (P). x(l [j) is the estimate of the state at time ti, and

P(t 1j) is the estimation error covariance matrix at time t
i
, given all measure-

ments up to and including time tj.

A basic model for an adaptive estimator is of the form
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x(i+1) = f (x(l), u()) +w (i) (6-3)

y(i) = h (x(i), u(i)) + v (i)

Here, u is a random (unknown) forcing function to be estimated.

6.1 Extended Kalman Filter

The Extended Kalman Filter [Ref. [13, p. 278] is the result of applying the

(linear) Kalman filter to a linearized nonlinear system which is relinearized about each

new estimate of the state as new estimates become available. The result for the

system of Eqn. (6-1) is

x(i+l i) =f (i(i i))

(6-4)

P(+l li) = (i+l, ) P( li) T (i+l, 1) + Q (i)

x(i |i) = x (i |i-1) + K(i) [y(i) - h(x(i |i-1))]

(6-5)

P(i i) = [I - K (i) M (i)] P (ifi-1)

where

K(i) = P(iil-l) MT(i) [M(i) P (li-l) MT(i) + R(i)]- 1 (6-6)

and

(ilx( i) x(t+l) I
) x (i)

(6-7)

M(1) ax
x(i f i-1)

Eqs. (6-4) are sometimes called the prediction equations, and Eqs. (6-5) the filter or
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update equations.

It is important to note that the state transition matrix * and the measurement

partials M are evaluated at the current best estimate. Thus they implicitly depend

on the estimate. As a consequence of this, the filter gain K also implicitly depends on

the estimate.

6.2 Iterated Extended Kalman Filter

The Extended Kalman Filter can be iterated at each measurement to improve

the reference trajectory and thus also the estimate CRef. [13, p. 279). The iteration

involves only the estimate update equation, the first of Eqs. (6-5). That equation

is replaced by the iteration

r (1(6-8)
+ K(i, 7k) y(i) - h(k) - M(l, ~k)(x(t ii-l) - (-k)]

k=1, ... , t

The iteration starts with

= (I li-), (6-9)

and we set

x(i It) = 7t* (6-10)

Observe that the gain K, matrix M and function h are recomputed each iteration.

The covariance matrix P(l li) in Eqn. (6-5) is computed only after the iteration has

converged. Note that the second iterate, 172' is merely the output of the Extended

Kalman filter.
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This iteration has a probabilistic (maximum likelihood) interpretation, which

may be found in Ref. [1], Chapter 9, Section 7.

6.3 Iterated Linear Filter - Smoother

The Iterated Extended Kalman Filter is designed for measurement nonlinearities

and does not improve the previous reference trajectory on the interval [ti.1 , t
l
) .

The latter reference trajectory can be improved by including a smoother (from t i to

ti l) in the iteration loop, and thus dealing explicitly with dynamical nonlinearities

as well. The result is the iterated linear filter-smoother, which also has a maximum

likelihood interpretation [Ref. [1], Chapter 9, Section 7].

Given :x(i-1 i-1) and P(i-1 li-1), the iteration is given by

tkl=£c(ii-1; k ) +K(i, tlk k)k(i, t+k, k)

(6-11)

4k+l = x(i-1 .i-1) + P(i-1 it-1) 4T(i, i-; k) MT (, T1k)Y ( i, , k) (i, k 1k )

k=l, ...,

where

T;1 = x ( l i - 1 ; 1), 1 = x (
i - 1 i - 1 ) (6-12)

and

x( i-1; Ek ) f(k ) + 4 (i, t-1; k) G[i (i-11 -1) - k]

P(i li-1; k) = (i, i-l; 4k ) P(i-1 -1) eT(i, i-l; k) + Q(i)
(6-13)

4 1, k' 4k ) = y() - h(tlk) - M(i, )lk)(ti It-1 ;k)- ] ]

K(i, k k) = P( i-1;4k ) M T (i, k) (7k, 
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Y(i, k' k) = M(i, k) P(i ti-1;,k) MT(i, ik) + R (I)

At the end of the iteration,

x(i 1-1) (it

(6-14)

P(i i-1) = P( li-1; )

and

x(i li) = t
(6-15)

P(i i)
'

= [I - K(i, ne7 .) M(i, r/~t) ] P(i i-1)

6.4 J-Adaptive Filter

This filter, based on the model in Eqn. (6-3), is designed to track the

random forcing function u(i) while estimating the state x(i) via an Extended Kalman

filter. Since the dynamics of u are supposed unknown, we assume that

u(i+l) = u(i). (6-16)

In order to track unpredictable variations in u, we maintain the uncertainty in u

constant, or some specified function which does not decrease as a result of the esti-

mation process. That is,

e [u(i) - U(ij)] [u(i) - u( 1 j)]} = U , (6-17)

where the covariance matrix U is specified.

The J-adaptlve filter is derived by augmenting the state x with u, writing

the augmented filter in partitioned form, and discarding the equations for the covar-

iance matrix U. This exercise is given in Ref. [I], pp. 281-286. To write the
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result, we need, in addition to the state estimation error covariance matrix

P(i [j),

P(i j) = e frx(i) - A(iIj)] x(i) - (i Ij)]T } , (6-18)

the following correlation matrix

C (l|j) = e {[x(i) - x(i j)] [u(i) - d(i ij)T] (6-19)

The J-adaptive filter is then given by

x (1 Ii) f f( (i it) U(i I ))

u(i+1 i) = U(i li) 

P(i+l Ii) = p (i+l, i) P(i i) VT(i+l, i) + (i+1, i) Cu(i Ii) T(i+l, i)
(6-20)

+ y (i+l, i) CuT(i i) T (i+, i) + (iL+ , i) U (T , i)

+Q(i)

C + (i+ i) = (i+, i) + b (1i+ l ,) U, Cu (0) = O

U

x(i {i) = x(i [i-1) + K x(i) [y(i) - h(x(i |i-l), u(i |i-1))]

u(i |i) = u(i |i-l) + K (i) [y(i) - h(:x(i |i-l), u(i Ii-l))] ,
(6-21)

P(i I i) = P(i i-1) - K (i) [M(i) P(iI i-1) + N(i) Cu T(i i-1)]

C U(i i) = C (i i-1) - K () [M(i) C u(i i-1) + N(i) U]

where
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K (i) = [P(i i-l) MT(i) + C (i Ii-1) NT(l)] Y (i)

K (i) = [C T(il -1) MT(i) + U N T(i)] Y-l (),
U U

Y() = M(i) P(i i-1) MT(i) + M( i) C (i li-l) N (i) + N(I)CT (T I-1)MT ()

+ N(i) U N T(i) + R(i)

0(t+l, x) = (i +1
bx(t)

I (t+l, ) = ;3x(i+ )
au(i) 

(6-23)
M(i)= h 

6.5 Schmidt-Kalman or Consider Filter

This filter (see Ref. [1], p. 285) takes the uncertainties in the vector

u into account, but does not track variations in u itself. That is, it assumes

that

u(i I i) = Q(o) ,

where u(o) is the a-priori estimate of u. The Consider filter is obtained

from the J-Adaptive filter by throwing away the second of Eqs. (6-21) and re-

placing it by Eqn. (6-24).

6-7

and

(6-22)

(6-24)

x(t I t-), U(l Ii-x) x(i [l-l), (i It-1)

x(t I ,), A(i It)

I N(i)-= h IF3u



7.0 ESTIMATORS APPLIED TO REENTRY

In order to specialize the estimators described in Section 6. 0 to the present

reentry problem, we specify the matrices appearing in the estimator equations.

These are the matrices of partial derivatives for which the detailed expressions

may be found in Section 8.0.

7.1 Extended Kalman and Iterated Filters (Sections 6. 1, 6. 2, 6. 3)

The state transition matrix 4Z appearing in Eqs. (6-4), (6-7), (6-11) and

(6-13) is the 6 x 6 matrix

1 (i+l, i) =

BaRt,

avi+

bR i

aRi+1
av.

aVi+l
av,

The system noise covariance matrix Q a

modeled as the 6 x 6 diagonal matrix

2

Q(i) =

w 0

where the 6 x 1 vector e (i) is defined as

2 

c(i) = C
2

r
m- a

appearing in Eqs. (6-4) and (6-13) is

0

2
6 (i)

7-1

(7-1)

(7-2)

(7-3)



with c2 a constant and the 3 x 1 vector E defined as
2 a

L+D
-

a m

For processing radar measurements, we have the 3 x 6 measurement

partials matrix M and the 3 x 3 measurement noise covariance matrix R (in

Eqs. (6-5), (6-6), (6-7), (6-8), (6-11) and (6-13))

M(i) =

[Arp ]T

aR

[aLA ] T

[1E ]T
aR

I
t
I
I
I
t

I3x
f

'3x 
O

I
I
II

I
, R(i) =

while for acceleration measurements,

M(i) = [Are , Ae], R(i)=

2a 0

2
"A

0
2

%E

2
a

x
7

I

2
ay

0 2a
az

7. 2 J-Adaptive Filter for Lift and Drag Coefficients

In the J-Adaptive filter for errors in the lift and drag coefficients, the

vector u is the 2-vector defined in Eq. (5-5). The matrices A, M and R

are as defined in Section 7.1. In addition (see Section 6.4),

7-2
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D (i+l, i) =

aRi+
1

acLavL

aCi+1

aCL

a i+1

acDa cD

In case of radar measurements,

3x2
N(i) = 0

while for acceleration measurements Ni is 3 x 2 given by

N(i) = [ e
C

L

Ae I
CD J

The matrix U is a 2 x 2 diagonal matrix with elements u.. which are specified

by input.

7. 3 J-Adaptive Filter for Unmodeled Accelerations

In the J-Adaptive filter for unmodeled accelerations, the vector u is

3 x 1. The state transition matrix * is as given in Eqn. (7-1), while ; is

6 x 3 given by

b(i+1, i) =
2

3x3
I

3x3
T I

The matrices M and R are as defined in Section 7.1. In case of radar measure-

ments,

7-3
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3x3
N(i) = 0 (7-11)

while for acceleration measurements N is a 3 x 3 identity matrix. (The latter

reflects the fact that sensed acceleration equals modeled acceleration plus u in

our model. ) The matrix U is a 3 x 3 diagonal matrix with elements uii which

are specified by input.
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8. 0 PARTIAL DERIVATIVES

The estimators described in the preceding sections require various partial

derivatives of the system function and measurement function for their implementation.

These derivatives are developed in the following subsections.

8.1 State Transition Matrix

In order to obtain rapidly computable, closed form expressions for the state

transition matrix, we make the following approximation (see Ref. [2]). We assume

that over short time intervals

7 ti+l ti '(8-1)

the accelerations on the vehicle are constant. That is, the right hand side of Eqs. (3-13)

are constant. Under this assumption, Eqs. (3-13) can be integrated in closed form to

give

MRi 2 I z 2 2Jz2

R.i+1 = R. + V M J2 [ 1 + 5 ] R. e}
r. r. r.

2
+ 1 PSVR [ CDVR + CLVRXAI ]

2m 2R L

(8-2)

,"R . pi z. 2 2.UJ2z i

Vi+1 i -3 ) r 5 e } 
r

t
ri i ri

2m SR [-
C D VR + C L VR A

]
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Eqs. (8-2) are closed form expressions for Ri+l and Vi+l (at time ti+l)

in terms of Ri , Vi, CD and CL (at time ti). We may now obtain the required

partials directly by differentiating these expressions. Neglecting the subscript i

on the right hand sides of Eqs. (8-2), we obtain

3~R 2
=R1+ - (G + 

aR. 2 0 1 r

3 R i+ 2

Ri+1 ~ 2

6Ri+L 2 e

ac D 2 CD

(8-3)

6Ri+l 2 e
ac L 2 CL

av
i+1 e
aR = r(Go G +A )

av
-= AI+rAr

av I + 

i+1 e

= TA

CL L

8-2



G = 3
r

r 3

' 2
r

11G r
1 5r

RR - I
J

+ 5 ()2] + C1-7
r

( z )2 RRT

1Oz T T)T] eTe
+ I, Re, +(Re) -2e e2 LRez z J z z 

r

T
Ae S ([-CDV + C L V xA]

r 2m DVR LR R VR+P -- ];FR

F v · T .,C T ,V L xA)

+ PVR [-VRk RK) +k ivRxA) ( ) ~ -(D 6+CL 6R ]}

(8-4)

e p I T ~A 2m Psf C V+C V x]VV 2m VR L DR LR J

+ VR -VR
R L- R

Ae _
C

D
2mD

1
2m

~ac, T / C T (VRA _ 
a + vRxA av -CDI+CL av i J

pSv VR

pS vR VR xPR R

and where
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3 2
r e z

0

2 2
rE (l-e 2)r

E

T R
VR 6R

V T _VR
R 6R

- I (a) -1

0 °z - y

z o {z x

x 0

= - wE (ez xR) ; (ez) +

(1-e2)

0
0

0

(1-e2 )

0

; 2 1 F - T

WN 2 (xR' )[l (Ri ')Z (e) -zl(dr) aR-R N42 r LI 1 z r ;RJ

0

1i I
(8-5)

1 aCD
c aM LaR

VR
c

5c /R
a h \ r

6rO -1

aR J

VR ac /R
c 3h \ r
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= cos B + sin B Fr (H) -l-cos R LI bR 1 (VR )

aV
R

= ;2(VR) aR

a R
a R

-=2 (R'XVR) ~1 (VR)

1

CVR

aC
L

6V
1

CVR

aC
L

aM

VR

VR

-R av R
1 (R) R I

a (VR xA)

a v = I (A) - ;4 VR)

aV - cos 2(R'xV R) i 2(R')+ sin Sie (H)a 2 (VR)+el(V )(R'XVR) IR')1

These partial derivatives are evaluated at

R i+l RiR= 
2

i+l1 i
2

V1+1 +V i
V V-

2

ii+l+ Ai
2

(8-6)

8-5

aH -i
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8. 2 Measurement (First) Partials

The first partial derivatives of the measurements (Section 4.0) are given by

br R
P_ P

5R r
P

aA 1

bR 2 2
rp-Zt

x
t

sin E
t

+y
t

cos 8
t

sin tgt t t t g

-Xt cos t + Yt sin C tsin (Pg

-Yt cos Pg

(8-7)

aE 1
aR 2 22

(r -z t )

(a T

ba T

T

cos t COS g -(zt/r2) (x- x )

sin 8t cos Pg - (zt/r2) (Y- Ys)

sin g - (zt/rp ) (z- z s )

ba
x

ax

aa
Y

ax

aa
z

ax

aa
x

ay

aa

ay

aa

ay

aa
x

aa
y

zaa
bz

= Ae
r

(8-8)
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9.0 SIMULATIONS

This section presents the results of simulations of the various filters

described in sections 6. 0 and 7. 0. Basically, three types of simulations were

performed. The first type deals strictly with nonlinearities; that is, a perfect

model is assumed. The object here is to study nonlinear effect in the reentry

problem. The second type of simulation performed deals with the problem of the

identification of time-varying errors in the lift and drag coefficients. Finally,

various model errors (see Section 5. 0) are introduced and simulations are performed

of estimators capable of tracking under such conditions.

All simulations are performed with a diagonal initial covariance matrix

(PO), with a standard deviation of 3 km in the position components, and 150 m/sec

in the velocity components. Actual errors in the initial position and velocity

estimate are consistent with these statistics. These initial errors are sizeable,

but probably realistic at spacecraft acquisition.

Radar tracking is simulated from several tracking stations. During radar

coverage a 3-vector measurement of range, azimuth, and elevation is processed

every 4 seconds. The noise standard deviations in these measurements are

a= 3m

aA = 0.010

crE = 0.01 °

When simulated, accelerations are processed as a 3-vector measurement every 4

seconds. The noise standard deviations in these measurements are
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= 0. 002a + 10 (km/sec
2

)
a x

x

a = 0. 002a + 10 6 (km/sec
ay y

= 0. 002a + 10-6 (km/sec 2 )a z
z

9.1 Estimation in the Presence of Nonlinearities

Various simulations of the Extended Kalman, Iterated Extended Kalman

and Iterated Linear Filter-Smoother estimators were performed in a perfect model

environment with no process noise (Q O in the filters). Under certain conditions

dramatic nonlinear effects are observed.

Figures 3 and 4 show the time histories of position and velocity errors

(IR-R I and IV-V |) for the Extended Kalman and the Iterated Extended Kalman

filters during a pass over the first tracking station. This simulation involves

tracking only--acceleration measurements appear to have insignificant effect on

these results. A family of curves is presented, depending on the line of sight ele-

vation angle (E ) at spacecraft acquisition (acquisition angle). It is seen that the

Extended Kalman filter diverges for high acquisition angles while the Iterated Ex-

tended Kalman filter performs well. At low acquisition angles both filters perform

similarly and well. The fact that the estimates are generally better after 65 seconds

for lower acquisition angles is due to longer duration of radar coverage, as indicated

in the figures.

These results have the following interpretation. At high acquisition angles

information rates and nonlinearities are high, calling for relatively large corrections.

The Extended Kalman filter, designed for linear or nearly linear systems, when

called upon to make large corrections, fails and is useless. We apparently have a

filter (the Iterated Extended Kalman) capable of tracking under these conditions.
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At low acquisition angles information rates are low, calling for smaller corrections,

and under these conditions the Extended Kalman filter works well. It is to be noted

that the covariance matrix of the Iterated Extended Kalman filter is consistent with

its estimation errors, while for the Extended Kalman filter it is not. In the latter

case errors are orders of magnitude larger than those predicted by the covariance

matrix.

An interesting and very significant feature of these results is the fact that

the covariance matrices associated with the two filters are the same--to almost two

significant digits. This means that linearized error analyses produce good results

for the present problem--but, such error analyses are indicative of the performance

of an optimal filter, not of the standard Extended Kalman filter. To put it another

way, if one has in mind the usual filter, linearized error analysis is wrong, mislead-

ing and optimistic. If one has in mind an optimal filter, the error analysis is correct.

Our simulations indicate that, in the present case, we have such an optimal filter.

To summarize briefly, these results have significant implications for

(1) filter design,

(2) tracking station (or beacon) placement and tracking schedule design, and

(3) error analyses interpretations,

for reentry trajectory estimation.

It is to be noted that the nonlinear effects seen in Figures 3 and 4 can only be

observed during transients when position and velocity uncertainties are relatively

high (e.g. acquisition). When Extended Kalman filter C (Figures 3 and 4) encounters

the next tracking station at a high acquisition angle, then, provided its errors are

low, its performance will be satisfactory. Whether or not its errors will be low

at the next station acquisition depends on the length of the data gap. It pays to

iterate when uncertainties and information rates are both high. Once uncertainties

are brought down, the iteration can be stopped. After approximately 30 seconds,

the iteration in filter A* is unnecessary.
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Now the divergence of filters A and B (Figures 3 and 4) can be avoided

by adding Q to the filter. While divergence can thus be avoided, such a filter

will clearly have poorer performance than the Iterated Filter since the system

model is then more uncertain. Similar comments apply to the artifice of in-

creasing the measurement noise covariance matrix R - a device sometimes suc-

cessfully used to prevent filter divergence. The Iterated Extended Kalman filter

directly addresses and solves the problem of nonlinearities in the present situation.

The Iterated Linear Filter-Smoother was simulated under various con-

ditions, including high acquisition angles as in Figures 3 and 4. Its performance

was generally insignificantly better than that of the Iterated Extended Kalman

filter. This is in general agreement with the results obtained by Mehra for

ballistic reentry (Ref [4]). System nonlinearities appear less significant than

measurement nonlinearities. Now system nonlinearities depend on T, the time

gap between data. For sufficiently large time gaps (r - 100 sec), the Iterated

Filter-Smoother shows some improvement over the Iterated Extended Kalman

filter, but the latter results were inconsistent. This may perhaps be due to the

linearizationin the smoothing loop which could perhaps be avoided. This is a

possible future research area.

9.2 Identification of C
L

and CD_

One of the more important problem areas in atmospheric trajectory esti-

mation is the lack of precise knowledge of the dynamical model. Thus it may be

necessary to estimate in real-time certain model parameters, and it can be ex-

pected that these parameters or parameter errors will be time-varying. Such

estimation is important not only for the trajectory estimation or navigation, but

also for guidance and control, which can depend on such parameters. In particular,

the model for lift and drag coefficients of the vehicle can be uncertain and, for

guidance and control purposes, it may be necessary to estimate such errors in

real time.
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Errors in the lift and drag models were simulated by setting CLLa = 0. 07,

CA = 0, 571 = -0.05, 72 = 0 (see Table 1, p. 5-2). The resulting errors represent

approximately 10% of the real lift and drag coefficients. Figure 5 shows the per-

formance of the J-Adaptive filter for lift and drag coefficients in estimating these

lift and drag errors. The simulated error and its estimate via the J-Adaptive filter

is plotted. The filter was simulated with u = (1.0 x 10 2) and u2 2 (6.0 x 10 )2

Q - 0. Tracking and on-board accelerations were used in this simulation.

It is seen in Figure 5 that the J-Adaptive filter tracks these errors ex-

tremely well. The error remaining after the estimation is always less than 5% of

the simulated error or less than 0. 5% of the real lift and drag coefficients; and

usually substantially less than this. It should be noted that the filter is not very

sensitive to the choice of the matrix U.

Figures 6 and 7 show the resulting position and velocity errors of the

J-Adaptive filter. Also shown is the radar coverage (nine traveling stations).

Fine detail of the error structure is not shown in these figures. The peaks in

the error curves are associated with two phenomena; skips in the reentry tra-

jectory and/or low elevation angle radar coverage or total tracking data gaps.

The large peak around 1000 sec corresponds to both a skip and a data gap. Where

multiple station coverage is available (e.g. times greater than 1500 sec), estima-

tion errors are brought down to the tracking noise level. It may be noted that the

on-board accelerations do not substantially improve the estimation when tracking

is available. However, during tracking data gaps, on-board acceleration are very

useful in inhibiting further error growth. That is to say, the error peaks during

gaps are higher without on-board acceleration data.

The dashed curves in Figures 6 and 7 show the errors for the Consider

filter for CL and C; i. e. when CL and CD errors are not estimated. Where the

dashed curve is absent, the Consider filter errors are similar to the J-Adaptive filter
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errors. The Consider filter performs surprisingly well, despite the fact that

CL and CD errors are not estimated. Its performance deteriorates somewhat

during tracking data gaps when a good model is needed for prediction. The J-

Adaptive filter produces a better prediction model than the Consider filter.

9.3 Estimation in the Presence of Arbitrary Model Errors

Several filters are simulated in the presence of arbitrary or unmodelable

errors. The errors simulated include the 10% CL and CD errors described in

Section 9.2. In addition, errors in vehicle mass, atmospheric density and un-

modeled winds are simulated. With reference to Table 1 (p. 5-2), m REAL =

111448 kg, while m MODEL = 112562 kg. This represents a 1% error in vehicle

mass. Density errors are simulated with k I = 0. 03. This represents a 3% error

in atmospheric density. The simulated winds wE, wN are described in Appendix

C, Figure C2 (wN =O). On the other hand, AwE = - E and AwN = - w
N so

that the system model has no winds.

The filters simulated are the J-Adaptive filter for unmodeled accelerations
-4 2

(with uii (5 x 10 , = 1, 3, Q - 0), the J-Adaptive filter for CL and CD (with
-2 2 -3 2L

U11 = (1x 10 ) u2 2 = (6 x 10 ), Q 0), and the Extended Kalman filter with

Q (c2 = 5 x 10 in Eqn. (7-3)). These parameter values are best engineered

values. It should be noted that the J-Adaptive filters are not very sensitive to

the choice of U, while the Extended Kalman filter is quite sensitive to the choice

of Q. The simulation features radar tracking from nine stations plus on-board

accelerations. The radar coverage is indicated in Figure 8.

Position and velocity estimation errors for these filters are shown in

Figures 8 and 9. Here again the peaks in the error curves correspond to skips

in the reentry trajectory and/or tracking data gaps or low elevation angle radar

coverage. The peak around 1000 sec corresponds to both a skip and a data gap.
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It is seen that the Extended Kalman filter with Q does not track and tends

to diverge. It is not easy to engineer a good Q. Furthermore, this filter has a

bad numerical feature in the sequential mode. When Q is added in propagation, the

covariance matrix P increases; and when data is processed, P decreases. This

causes fluctuations of several orders in magnitude in P, tending to cause ill-

conditioning and destroying the the correlations or the geometry of P.

The J-Adaptive filter for CL and CD tracks well, except in the regions

of the wind gusts (750-950, 1450-1650 sec). Actually, it does not quite recover

from the second wind gust. This is because the lift and drag directions span the

space of all the model errors with the exception of the winds. As a consequence,

this adaptive filter is not adequate in general and needs to be augmented with

another variable in the direction orthogonal to lift and drag. It may be noted (see

Figure 9) that, prior to the encounter with the first wind gust, the J-Adaptive

filter for CL and CD tracks extremely well, better than the J-Adaptive filter for

unmodeled accelerations. This is because the first adaptive filter has a better

prediction model than the second one.

Figures 8 and 9 indicate that the J-Adaptive filter for unmodeled accelera-

tions tracks quite well in the presence of arbitrary model errors, even through

the winds. Of course the errors simulated are quite large and this limits the

possible tracking accuracy. Tracking accuracy could be improved either by

making model errors smaller or giving the filter more tracking data. Toward the

end of the trajectory, when multiple station coverage is available, the position

and velocity errors almost approach the radar noise level.

How well the J-Adaptive filter for unmodeled accelerations actually

tracks these unmodeled accelerations can be seen in Figure 10. Plotted in this

figure is the ratio
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ly a - a modeled - u I

l - a modeled 

The denominator in this ratio approximately measures the net acceleration

error due to the model errors simulated, while the numerator is the residual

acceleration error after using our estimate of the unmodeled acceleration u.

It is seen that the J-Adaptive filter identifies 99% of the unmodeled accelerations.

It should be noted that all computations performed in this study were in

inertial coordinates. This is not the most convenient system for specifying U in

the J-Adaptive filter. Performance of the J-Adaptive filter may further be en-

hanced by specifying levelsof uncertainties in the acceleration vector in other

coordinates (e. g. body coordinates).
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10.0 CONCLUSIONS AND RECOMMENDATIONS

We believe that the results of this study have several important and practical

implications for reentry estimation and for other estimation problems as well.

First, significant nonlinearities indeed exist in the reentry estimation problem.

The Iterated Extended Kalman filter appears to offer a practical solution for tracking

through nonlinearities without degrading the information content of the data. A

practical filter could use this iteration feature when it is appropriate to do so. Other

comments concerning estimation in the presence of nonlinearities may be found in

Section 9. 1.

The J-Adaptive filter concept is sound and shows great promise for practical

estimation problems. It can be used to identify models in real time as well as

strictly for tracking, as in the unmodeled acceleration mode (Section 7.3). J-Adaptive

identification of lift and drag coefficients could perhaps proceed in the presence of

arbitrary model errors by the introduction of a third orthogonal variable, provided

vehicle mass and atmospheric density errors are not too severe. This concept is

clearly applicable to general estimation problems, quite aside from reentry.

On the basis of the results obtained in this study, we recommend that these

filter concepts be applied to concrete mission profiles of interest, such as space

shuttle reentry. The filters studied have been tested in a realistic environment in

the course of study. Their simulation in a concrete mission would serve to further

verify these concepts as well as assist in the design of tracking placement and tracking

schedules.

We also recommend that the navigation problem be studied in conjunction with

guidance and control and attitude determination. Many interactions obviously exist

between these problems. The identification of lift and drag coefficients may be

required for guidance and control purposes. Guidance accuracies are related to

navigation uncertainties. There is an obvious interaction between rotational and

translational motion, leading to a coupling between navigation and attitude determination.

10-1



The filter concepts developed here (J-Adaptive filter) may be useful in altitude

determination, and in the coupling between it and navigation.

In a more research oriented vein, it may be desirable to test certain non-

iterative nonlinear filters, such as the Modified Gaussian Second Order filter

(see Ref. [1), in a simulation. Another research area of interest is the adaptive

estimation of the J-Adaptive filter covariance matrix U from filter residuals in

real time, along the lines of the adaptive filter described in Ref. [13. This could

lead to the elimination of the last engineered parameter in the filter.
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APPENDIX A - FIGURE OF THE EARTH

The cross section of the oblate earth (see Figure A), in any plane containing

the polar axis (z), is an ellipse described by

22 22 2 2
r +r z = r= r (A-1)
P E pE

The eccentricity of the earth ellipse is

2 = ( r )2 , (A-2)

rE

so that

Solving

Eqn. (A-1) can be written as

2
2 z2 2

+ 2 = rE (A
(1-e )

We wish to determine the radius of the earth at some point (o,' zo). Now

2 2 2
r = +z (A

O o O

Eqn. (A-3) for o , we get

2
2 r E

o 2
1+ tan2 cp
1+ 2

1 -e

2 2 2
Multiplying Eqn. (A-5) by zO / = tan p , we get

2 2
2 r E tan cp

z 
tan p

1+ 2
1-e

-3)

-4)

(A-5)

(A-6)

A-i
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and then from Eqn. (A-4) we obtain

222
2 rE (l+tan2q()

r* = 2o 2
1+ tan 2 p

1+ - (2
1-e

2
r E

1+(-2 ) sin2 P
l-e

2 1 2 z 2 -
0 ]1 e z ]-r --- 2) 

s i n
2 ]- r +( )(r

o 2 E 2
1-e 1-e

(A-7)

We next determine the distance I* (Figure A). The slope of line A, which

is tangent to the ellipse, is obtained by differentiating Eqn. (A-3),

fdz\ 2 O(z ) =- (-e2) 
o o

(A-8)

Then the slope of the normal (line B) is

i 1tan gp =- - = -

g (/d ) (1-e2)
0

z
o

g -
(A-9)

It then follows that the equation of line B is

2
z e

+ (tan pg)
1-e

(A-10)

Evaluating Eqn. (A-10) at z = 0 we get

* = 2 e(A-ll)

Equations (A-7) and (A-11) are exactly correct only if the vehicle is on the

earth surface. At altitude, r given by Eqn. (A-7) is not the radius at the sub-vehicle
0

A-3

so that



point. However, at reentry altitudes, the errors in these equations are very small.

Now by definition,

z 2
tan p = = (I-e2 tanan p (A-12)

where the last equality follows by Eqn. (A-9). This provides us with the relationship

between geocentric and geodetic latitudes (exact on the earth's surface).

Equations (A-3) and (A-12) can be solved simultaneously for z and 4

rE(l-e2) sin cPg

91-e sin2 p) 

r E cos Pg
E g(1-e 2 sin

2
p ,

Defining 1
2 2 

a
1=

(1-e sin q)

2 (l-e 2 (A-13)
a

2
= (1- e2 ) a

we get
= rEal cos pg

(A-14)
z = r E a2 sinp 

At altitude h,

= (rE al+ h) cos g ,

(A-15)
z = (rE a2 + h) sin (Pg
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APPENDIX B - ATMOSPHERE AND AERODYNAMICS

The air density and speed of sound were obtained from NASA/MSFC, tabu-

lated as a function of altitude. These are reproduced here in TABLE B1. Linear

interpolation was used on In p and c.

The vehicle aerodynamic characteristics were provided by NASA/MSFC

and are reproduced here in TABLE B2. These are the estimated trimmed aero-

dynamic characteristics of the MDAC Delta Orbiter (Dwg. No. 255BJ00029). The

vehicle reference area S was given as 5990 ft , and vehicle weight as 245703.

lbs. Linear interpolation was used on the CL and CD tables both in angle of

attack at and Mach number M.
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Altitude (ft) Density (slugs/ft3 ) Speed of Sound (ft/sec)

h x 10 In p c
_ ,- .. .. _ ........ 

-8.5497

-8.5497

-9. 9009

-11.0226

-11.3280

-12.2950

-12.7493

-13.3185

-13.9662

-14.8807

-15.5359

-16.0476

-16.4579

-16.8751

-16.9350

-16.9949

-17. 0677

-18.4552

-21.6258

-24.0498

-24.0498

968.08

968.08

985.60

989.90

1025.90

1061.90

1080.30

1082.02

1059.85

1020.99

976.45

944.28

920.06

896.70

893.44

890.20

886.29

884.00

884.00

884.00

884.00

TABLE B1

AIR DENSITY AND SPEED OF SOUND

B-2

0.0

6.4997

9.2070

9.8550

12.1330

14.3265

15.4445

16.9277

18.6937

21.1715

22.8226

24.0154

24.9131

25.7791

25.8999

26.0199

26.1649

28.7548

34.4373

40.0000

50.0000

_ . _ D .



M = 0 0.6

at CL L/D CD

.150

.350

.541

.710

.875

. 998

.982

.956

.921

.885

.847

3.50

5.25

4.20

3.02

2.28

1.8i

1.48

1.22

1.01

0.84

0.69

.043

.067

.129

.235

.384

. 551

.664

. 784

.912

1.054

1.228

60 .800 0.55 1.455

M = 0.9

CL L/D CD

.120

.280

.446

.606

.735

.850

.969

.995

· 968

.935

.905

2.00

3.95

3.09

2.41

1.95

1.59

1.33

1.11

0.95

0.79

0.66

M=1.0

CL L/D CD

.060

.071

.144

.251

.377

.535

.729

.896

1.019

1.184

1.371

.879 0.55 1.598

.120

.280

.439

.579

.700

.815

.965

1.001

1.005

.975

.950

1.80

3.55

2.86

2.29

1.87

1.55

1.30

1.10

0.93

0.78

0.66

.067

.079

.153

.253

.374

.526

.742

.910

1.081

1.250

1.439

.925 0.55 1.682

TABLE B2

LIFT AND DRAG COEFFICIENTS

B-3
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M=1.5

Yt CL L/D C D

5 .120 1.60 .075

10 .280 3.00 .093

15 .446 2.55 .175

20 .606 2.10 .289

25 .735 1.76 .418

30 .850 1.49 .570

35 .930 1. 27 .732

40 .974 1.08 .902

45 .993 0.91 1.091

50 .990 0.78 1.269

55 .971 0.66 1.480

60 .946 0.55 1.720

CL L/D CD

.105 1.35 .078

.252 2.80 .090

.383 2.41 .159

;,521 2.01 .259

.655 1.70 .385

.783 1.45 .540

.954 1.22 .700

.933 1.05 .889

.972 0.90 1.080

.965 0.76 1.270

.962 0.65 1.480

.941 0.55 1.710

CL L/D CDt -. ~~

. 074

.193

.315

.431

.545

.659

.765

.865

.925

.934

.929

.904

1.15 .064

2.60 .074

2.31 .136

1.95 .221

1.65 .330

1.39 .474

1.19 .643

1.02 .848

0.88 1.051

0.75 1.245

0.64 1.452

0.55 1.644

TABLE B2 (con't)

LIFT AND DRAG COEFFICIENTS

B-4
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M = 3.0

CL L/D CD
.1 1

CL L/D CD
f e

' ~

5

10

15

20

25

30

35

40

45

50

55

60 .836 0.55 1.520

0.85

2.25

2.23

1.91

1.61

1.39

1.19

1.01

0.88

0.75

0.64

.058

.064

.109

.179

.279

.403

.571

.776

,977

1.176

1. 354

TABLE B2 (con't)

LIFT AND DRAG COEFFICIENTS

B-5

.049

.131

.219

.314

.416

.525

.639

.758

.830

.858

.845

0.66

1.40

2.23

1.91

1.61

1.39

1.19

1.02

0.88

0.75

0.64

.049

.143

.242

.342

.449

.560

.680

.792

.860

.882

.867

.074

.094

.098

.164

.258

.378

.537

.743

.943

1.140

1.320

.800 0.55 1.450
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APPENDIX C - REENTRY TRAJECTORY

The reference trajectory used in this study was obtained from NASA/MSFC.

The constants used are

U

e

J 2

rE

S

m

3. 986032 x 105 km 3/sec2

= 7.2921159 x 10 rad/sec

= 0.0

= 0.0

= 6378. 1641 km

= 5.564914 x 10
-

4 km 2

1. 11448 x 10 kg

Initial time

sec = 0. 0.

(t o = 0) is at year = 1970, month = 6,

The initial conditions are

day = 24, hour = 5, min = 55 and

x = 2.0147541

y = -3.3531137

z = -5.1912063

x 103 km

x 103 km

x 10 km

x = 3.1613972 km/sec

j = - 5.2614483 km/sec

i = 4.7956728 km/sec

The control functions (angle of attack and roll angle) are shown in Figure C1. The

resulting trajectory has the altitude and Mach number profiles as shown in Figure

C1. The reentry is essentially from a polar orbit with latitude varying from -53

to 280.

Some of the simulations performed feature unmodeled winds.

used have an east wind component wE as shown in Figure C2, and wN

essentially a crosswind.

The winds

- 0. This is
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